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SUMMARY 

Nowadays, the European green toad (Bufotes viridis) is Sweden’s most threatened amphibian species 

due to habitat loss and fragmentation, disease and anthropogenic influences. This study focused on habitat 

composition differences and changes in B. viridis habitats in the 1950s and 2010s to determine if this could 

have contributed to the species' decline. In addition, this study investigated whether extant and extinct 

habitats differed in degree of habitat openness and if the openness changed between the 1950s and the 

2010s. The comparison was made by remote sensing and classification of, in 2022, seven extant and seven 

extinct habitats. The classifications were done on historical panchromatic (1956-1967) and modern infrared 

aeroplane imagery (2008-2016) using the ISO-cluster unsupervised classifier in combination with post-

processing and manual correction. The method was evaluated on its performance in terms of accuracy to 

determine if it suits the needs of Nordens Ark. 

 

The results show significant habitat composition differences between extant and extinct B. viridis 

habitats in the 1950s and the 2010s. Extinct habitats contained much more agriculture and much less barren 

land in the 1950s and 2010s. The combination of these habitat stressors could have contributed to decreasing 

B. viridis populations through reducing habitat sizes, habitat fragmentation, and increased migration. 

Furthermore, these adverse area characteristics were present in extinct habitats before the 1950s, indicating 

that the critical thresholds for barren land and agriculture were exceeded long ago and that the decrease of 

the B. viridis population in Sweden was a delayed and slow event. However, habitat openness is unlikely 

to have contributed to the decline of B. viridis because no differences regarding habitat openness were 

found. 

 

The remote sensing method of this study shows promising results and highlights the necessity of 

unsupervised classification in combination with high-resolution imagery, post-processing and manual 

correction. However, the probability that features in the field are classified correctly due to chance is slightly 

higher than preferred. Thus, familiarity with the target habitats is essential to reduce the possible 

inaccuracies due to human interpretation and manual correction. Nevertheless, it produces maps that 

represent features in the field satisfactorily. 

 

  Further conservation efforts should focus on habitats with much barren land and little agriculture. 

Furthermore, terrestrial habitats could be protected by implementing landscape-scale protection guidelines 

in the B. viridis species action plan. In addition, new habitats can be created to reduce the effects of habitat 

isolation, habitat fragmentation and mortality due to migration.  

 

When using remote sensing for animal conservation, it is recommended to use imagery with a high pixel 

detail and to familiarise oneself with the target habitat to reduce inaccuracies in the created classification 

map. Furthermore, it is recommended to classify urban and similar areas as a whole and not by their 

components, such as roads, gardens and houses.  

 

In conclusion, remote sensing shows the potential to strengthen the conservation strategy of Nordens 

Ark and can be used to identify suitable reintroduction sites and habitats for B. viridis.  
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1 INTRODUCTION 

1.1 BACKGROUND INFORMATION 
Bufotes viridis. The European green toad (Bufotes 

viridis), Error! Reference source not found., can be 

found in most of Europe, parts of Central Asia and North 

Africa. Southern Scandinavia, the Baltic states, and Russia 

are the northernmost boundary where B. viridis can be 

found[1]–[4].  

B. viridis is a predominantly terrestrial species 

spending most of its life on firm and dry ground. In 

Sweden, B. viridis prefers to live in open habitats consisting 

of shoreline meadows and shallow water bodies surrounded 

by shrubs and low grasses, which are quickly warmed up in 

early spring and summer. Terrestrial habitats are essential 

as the primary living habitat, and wetlands for 

breeding[2][5]. When these shallow bodies of water warm 

up, the water also provides juvenile toads with a food 

source[2]. Nordens Ark tracked 17 released B. viridis in 

Högby hamn, Öland, using radio telemetry in September 

2020. While tracking, there were indications that the 

species prefers open habitat types while avoiding areas with 

trees, tall grass, or both (pers. obs. unpublished data, K. 

Försäter, S. Qualm, 2020). 

 

In recent decades human activity has caused changes to 

biodiversity. The habitats of B. viridis are reduced by 

anthropogenic and natural activities such as land-use 

change and possibly a decrease in grazing [7]. In addition, 

agriculture, lowering water levels, predation, and disease 

affected the toad and its habitats [2], resulting in more 

homogeneous landscapes, habitat loss, fragmentation, and 

degradation. The consequences of habitat loss are 

dwindling population sizes and reduced ecosystem and 

genetic diversity[8]. However, climate change has been 

estimated to be a less likely driver of Sweden's B. viridis 

population decrease [9]. Genetic diversity is required for 

species to adapt to changes. Without it, the toad species is 

prone to reduced gene flow and local extinction [10]. 

Because of this, B. viridis is known as “the most vulnerable 

amphibian species in Sweden” [8]. Unfortunately, analyses 

show that human activities and land use keep intensifying 

at the cost of the environment[11].  

Since the 1930s, grasslands in southern Sweden have 

made way for spruce plantations and industrialised 

agriculture, particularly crop production [12]. Nowadays, 

B. viridis' terrestrial and aquatic habitats are threatened. As 

a result, the County Administrative Board of Kalmar 

intensified the conservation efforts of B. viridis through 

habitat restoration and reintroduction in collaboration with 

Nordens Ark in 2009. Since then, the county board has 

restored coastal habitats on the island of Öland. In addition, 

tadpoles, juveniles and adult toads have been released by 

Nordens Ark in a bird sanctuary named Högby hamn in the 

northern part of Öland. Högby hamn was chosen as the 

reintroduction site because B. viridis was last found on the 

island's northern part before it was listed as locally extinct 

in this region[2], [3]. 

 

Remote sensing. Habitat changes have become easier 

to monitor since the emergence of satellite imagery in the 

1970s. Remote sensing can be used to monitor areas from 

a distance by using electromagnetic multispectral drone, 

aeroplane or satellite images. Using Geographical 

Information System (GIS) software, the multispectral 

images are analysed on their spectral properties to classify 

the area with respect to land use and vegetation types. In 

remote sensing, GIS classifications will result in different 

Land Use and Land Cover (LULC) classes. Examples of 

classes are urban, roads, concrete, trees, grass, sand, etc. By 

classifying a time series of a specific area, information 

about LULC change can be acquired, and trends identified 

[13].  

Combining ground data and remote sensing is a 

valuable method for identifying area characteristics. Before 

remote sensing was a commonly used tool, it was 

exclusively required for one to be in the field to gather 

information about the monitored area. Whereas with 

remote sensing, this is not necessarily the case. However, 

methods requiring one to be in situ are not easily applicable 

on a large scale and are too labour intensive and time-

consuming. While in situ methods could be more accurate 

and provide a vast amount of information, it is preferred to 

Figure 1, Bufotes viridis 
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use remote sensing in combination with low-intensity 

ground-truthing as it is applicable on a large scale and can 

be used for prediction and quantification [13]. 

 

Nordens Ark. The organisation Nordens Ark is a 

private non-profit foundation that aims to conserve 

endangered animals through breeding, research, education 

and training. Endangered animals reared at Nordens Ark 

are reintroduced into the wild, often combined with habitat 

restoration in collaboration with the Swedish 

environmental agency Naturvårdsverket and the various 

Swedish county boards.  

Since the early 2000s, Nordens Ark has reintroduced 

thousands of animals born at the zoo [14]. One of the 

released species is the European green toad. By remote 

sensing LULC changes in extinct and extant B. viridis 

habitats, Nordens Ark hopes to find a possible cause of the 

B. viridis population decline and possibly guide future 

research. Furthermore, this may identify what 

improvements can be made to its habitats so that future 

restoration efforts will be more effective because limited 

adult toads have been observed in Högby hamn since the 

increased conservation efforts in 2009. 

1.2 GOAL 
Through remote sensing, this project aimed to 

determine if there are habitat differences between extant 

and extinct B. viridis habitats that could have contributed 

to the decline of this species in Sweden. This was done by 

comparing seven extinct habitats (no toads present in 2022) 

to seven extant habitats (toads present in 2022). In addition, 

the habitat composition of extant and extinct habitats in the 

1950s was compared to the 2010s to determine if there was 

a significant change over time. The habitat classifications 

were performed on historical panchromatic (grey-scale) 

aeroplane imagery (1956-1967) and modern infrared 

aeroplane imagery (2008-2016).  

1.3 HYPOTHESIS 
It is hypothesised that extant habitats and extinct B. 

viridis habitats significantly differ in habitat composition. 

In addition, B. viridis’ population declined due to habitat 

changes such as the conversion of grasslands to forests and 

agriculture and, for B. viridis, unfavourable vegetation 

growth, changing the composition in its habitats from open 

to covered in the last six decades. Furthermore, remote 

sensing of habitats could be an easily applicable method for 

Nordens Ark to help reintroduce animals. The hypothesis 

leads to the following research questions:  

1. Did the habitat openness of B. viridis habitats 

change significantly in the last six decades, 

possibly contributing to the decline of the 

population size of the toad species in Sweden? 

2. Is there a significant difference in habitat 

composition between extant and extinct B. viridis 

habitats? 

3. How much has the habitat composition of B. viridis 

habitats changed between the 1950s and the 2010s, 

and could that change have led to the decline of 

Sweden's B. viridis population? 

4. Is unsupervised classification in combination with 

post-processing and manual correction suitable for 

the needs of Nordens Ark? 

1.4 READING GUIDE 
The second chapter gives a theoretical background. It 

presents relevant literature and information about several 

topics related to this study. Firstly, the habitat preferences 

of B. viridis are reviewed, and the habitat preferences and 

threats are substantiated. Secondly, several remote sensing 

techniques are explained, their benefits and drawbacks, and 

what steps could be taken to improve the accuracy of the 

created classification map. Finally, some accuracy 

assessment methods are listed and how to interpret their 

assessment results. The third chapter presents the overall 

methodological approach used in this study and 

substantiates the individual steps. The results in the fourth 

chapter list the findings of this study and provide their 

implications. Subsequently, the findings and method are 

discussed and compared to similar studies. Finally, the 

conclusions are presented which are followed by the 

recommendations. 
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2 THEORETICAL BACKGROUND 

This chapter presents relevant literature and information 

about several topics related to this study. Firstly, the habitat 

preferences of B. viridis are reviewed, and the habitat 

preferences and threats are substantiated. Secondly, several 

remote sensing techniques are explained, their benefits and 

drawbacks, and what steps could be taken to improve the 

accuracy of the created classification map. Finally, some 

accuracy assessment methods are listed. The methods are 

explained, what sampling methods there are and how to 

interpret the accuracy assessment results. 

2.1 BUFOTES VIRIDIS HABITAT 
B. viridis is globally listed as “least concern” by the 

IUCN. It is a relatively common toad species in Europe; it 

occurs from eastern France to southern Scandinavia, 

northern Africa and Central Asia [1]. However, its 

population trend is declining and red-listed in Sweden [5]. 

The toad is able to live in steppes, is adapted to dry, arid 

environments and prefers open habitat types with low 

scattered vegetation and woody debris that provide a place 

for thermoregulation and predator avoidance [15]–[18]. It 

can be found in agricultural environments with warm 

climates and lives close to humans, which it might even 

benefit from[19]. In urban environments, city parks, ponds, 

gardens, and ruderal lands make suitable habitats [20]–

[22]. However, if habitats are disturbed too much, toads 

will migrate further in search of nutrients or more suitable 

habitats [18].  

Despite human activity being described as one of the 

pressures by the IUCN [5], B. viridis was discovered in 

Vienna's urban environment by Josephus Nicolaus Laurenti 

in 1768. The toad was found in the shadow-rich crevices of 

the city walls [23]. However, it has been suggested that 

terrestrial habitat quality is affected by intensive human 

land use and that B. viridis life-history traits (age at 

maturity, size at maturity, longevity, reproductive lifespan 

and age-size relationship) are linked to its habitat quality. 

The affected traits confirm the life-history theory, meaning 

that toads living near environments with intense human 

land use mature earlier but are smaller and have shorter 

lifespans [24].  

The IUCN states that the primary pressure on B. viridis 

is the disappearance of breeding habitats. The decline of 

suitable breeding habitats is caused by wetland drainage, 

droughts, and pollution by agriculture and industry [25]–

[28]. Sweden implemented sustainable agriculture and 

rural development frameworks in 1997. The implemented 

framework mainly focused on stabilising nitrate levels in 

water supplies. But it also limited the quantity of fertilizer 

and livestock manure that could be applied to fields. In 

addition, rules were established on record keeping, waste 

handling, and storage facilities [29]. Despite implementing 

frameworks that promote sustainable agriculture, Sweden 

still employed unsustainable agricultural practices in 2004 

[30]. In southern Sweden, agriculture uses vast amounts of 

nitrogen, phosphorus, and synthetic pesticides, leading to 

disturbed nutrient cycles and environmental pollution and 

thus decreasing the number of suitable habitats [30], [31]. 

In addition, toads are at risk of dying when crossing roads 

during migration[5], [32].  

In summary, B. viridis prefers open habitat types and is 

not necessarily negatively affected by urban environments. 

However, intensive human land use, such as agriculture, 

causes the decline of B.viridis populations due to the loss 

of suitable habitats. In addition, if habitat quality is 

insufficient due to human activities or the lack of landscape 

elements (e.g., woody debris and stone walls) that offer 

protection and a place for thermoregulation, toads mature 

and die earlier [24]. 

2.2 IMAGE CLASSIFICATION. 
For effective land management, it is useful to identify 

LULC changes over a period of time so that their dynamics 

are identified [13], [33]. Image classification of historical 

panchromatic aeroplane photography is a valuable method 

to identify these changes as they have a longer history than 

satellite imagery. Because of this, such imagery offers the 

potential for detailed ecological assessments[34].  

Using Machine Learning (ML) for classifying LULC of 

areas substantially reduces human labour and costs 

compared to manual classification methods. ML uses 

algorithms to teach classifiers to identify what LULC 

classes are represented by specific multispectral 

information and creates classes based on this information. 

Nowadays, there are two different classifier types for ML 

classification: Unsupervised Machine Learning (UML) and 

Supervised Machine Learning (SML) (Table 1). Both SML 

and UML can produce satisfactory results when classifying 

panchromatic and modern imagery, but SML generally 

achieves better accuracy[35], [36].  

SML and UML classifiers can be subdivided into pixel 

and object-based classifiers. Pixel-based classifiers analyse 

the spectral properties of individual pixels without taking 

spatial or contextual features into account, resulting in 

noise or a so-called “salt and pepper” effect [37], [38]. On 

the other hand, object-based classifiers consider those 

features by grouping pixels together using segmentation. 

However, this makes the method prone to over or under-

segmentation. Over-segmentation causes inaccuracies by 

grouping too many pixels together, resulting in a too coarse 

classification map. In contrast, under-segmentation could 

result in the exclusion of spatial and contextual features, 

thus also impacting classification accuracy [39]. 

Some classifiers are easier to use than others. Support 

Vector Machine (SVM), Maximum likelihood 
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classification (MLC), Artificial Neural Network (ANN) 

and Object-Based Imagery Analysis (OBIA) require the 

user to provide training samples to the classifier, while 

Decision Trees (DT) requires the setup of elaborate 

decision trees for the classification. These 5 SML 

classifiers require the user to assign values to pixels or 

objects, increasing human labour. In addition, advanced 

knowledge about the use of these classifiers is practically 

mandatory in order to achieve good accuracy values and 

thus create reliable classification maps. On the other hand, 

ISO-cluster Unsupervised Classification (ICUC) and K-

MEANS only require the user to provide the wanted 

number of classes to be specified, increasing processing 

speed but possibly at the cost of accuracy [40]. However, a 

proper comparison of classifiers is still absent, making it 

difficult to state which is better [41].  

 
Table 1, contemporary image classification classifiers. 

SML UML 

Support Vector Machine 

(SVM) (pixel) 

ISO-cluster unsupervised 

classification (ICUC) 

(pixel) 

Maximum likelihood 

classification (MLC) 

(pixel) 

K-MEANS (object) 

Artificial neural network 

(ANN) (pixel) 

 

Decision trees (DT) 

(pixel) 

 

Object-based imagery 

analysis (OBIA) (object) 

 

 

A challenge of historical image classification is that 

such imagery often is panchromatic (grey-scale). 

Therefore, pixels of classes can share similar spectral 

properties due to a lack of pixel information (e.g. water 

looks black and could look like roofs) [42]. Pre-processing 

of the imagery might be required to alleviate the lack of 

pixel information. Segmentation of the imagery could 

introduce additional information by producing more 

homogeneous regions, allowing for a better distinction of 

objects and spectral properties [43]. Pre-processing of 

panchromatic imagery can also focus on contrast correction 

to make classes more distinguishable. These corrections 

can be done in software like GNU Image Manipulation 

Program (GIMP) or Adobe Photoshop [44], but also in GIS 

software.  

2.3 ACCURACY ASSESSMENT 
After classifying, the classification map needs to be 

assessed on its accuracy, or rather how well it reflects 

reality. An accuracy assessment is necessary because the 

efficacy of LULC maps relies on knowing its uncertainty 

[45]. Transparency of accuracy assessment methods is 

essential for the integrity and reliability of LULC 

information [46].  

Unfortunately, less than a third (32%) of remote sensing 

studies used replicable accuracy assessment methods, 

making comparisons to other studies challenging. It is most 

common to report the Overall Accuracy (OA), Kappa 

Coefficient (KC), User Accuracy (UA) and Producer's 

Accuracy (PA) when describing the accuracy of a created 

classification map [45]. Confusion matrices of the samples 

can be created to measure the agreement between 

classification and reality. The matrices are based on points 

of the created classification maps that have been compared 

to higher accuracy maps or imagery of which the user is 

100% certain that these points/polygons represent a 

specific LULC in reality. Confusion matrices show 

information about actual and predicted classifications and 

provide the following information [47]: 

 

1. Overall Accuracy (OA): is the total accuracy 

percentage of a map based on the producer 

accuracy of all classes. OA does not consider the 

accuracy of individual classes. 

2. Producer Accuracy (PA): this value shows the 

probability that a certain feature of an area in the 

field is correctly classified. For example, the 

LULC class “trees” achieved 45% PA, meaning 

that 45% of actual trees are correctly classified. 

3. User Accuracy (UA): this value shows the 

probability that a pixel labelled as a certain class 

is actually that class in reality. For example, the 

LULC class “grass” achieved 75% UA that 

there is a 75% chance that an area classified as 

“grass” is actually grass in the field. 

4. Kappa Coefficient (KC): this value shows how 

well the classification represents reality due to 

change only and is often presented as a 

percentage. Where 100% KC shows perfect 

agreement between the created classification 

maps and reality, and -100% shows no 

agreement with reality at all. KC provides a 

better interclass distinction than OA. For 

example, a classification map with 81 % KC. So, 

when the map is used, there is a 19% probability 

that features in the field are correctly classified 

only due to chance. 

 

Generally, a classification is deemed acceptable if the 

KC and OA are above 85% [48][49]. However, raising or 

lowering this value might be a good practice depending on 

the spectral properties of classes. Increasing the minimum 

accuracy value is a good practice if classes are spectrally 
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distinct. On the other hand, if classes are not as spectrally 

separable, it might be better to lower the minimum 

accuracy value [49]. 

 It is entirely possible that the OA and KC of a 

classification map show good results. However, while 

those values are high, the UA and PA of (some) individual 

classes could be low, while others could be high. Meaning, 

that if the finished classification map were to be used, the 

user would encounter a different LULC class than indicated 

on the map. Therefore, consideration should also be given 

to the UA and PA when reporting the accuracy of a 

classification map and when specific LULC classes are of 

interest to the user [50]. 

Several sampling types are commonly used when 

determining the accuracy of a classification map; all 

methods provide the user with sampling data for the 

accuracy assessment. The sampling data can be compared 

to more accurate classification maps or higher resolution 

photos to determine the classification accuracy. This 

comparison assesses the sampling data to determine 

whether a sampling point is correctly classified or mistaken 

for another LULC class. In order of most to least prevalent 

sampling types [29]:  

 

• Pixel: a single pixel from higher or similar 

resolution imagery is compared to the created 

classification map. 

• Pixel cluster: a group of pixels from higher or 

similar resolution imagery is compared to the 

created classification map. 

• Polygons: an irregular amount and shaped group of 

pixels from higher or similar resolution imagery is 

compared to the created classification map. 

• Field plots: samples gathered in the field using an 

area-based sampling unit. The collected field data 

will be compared to the created classification map. 

• GPS-points: point feature data collected from a 

GPS device. The points can be used to ground-truth 

the created classification map. 

• Map correlation: Comparison with a map that is 

more accurate. 

 

Despite pixel sampling gathering being used most often, 

it does not imply that it is the best accuracy assessment 

method. For example, an area within the classification map 

can be assessed on its accuracy to determine the accuracy 

of the whole map. The assessment can be done by 

comparing the classification map to the originally used 

aeroplane photos [51]. 
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3 METHODOLOGY 

Overall approach. This study started with gathering 

information about the location of B. viridis habitats in 

Sweden, which can be challenging when not proficient in 

Swedish. Fortunately, Ballard-Johansson [9] compiled a 

list of all B. viridis habitats (and habitat coordinates), 

making the study area selection process much more 

manageable. Seven extant and seven extinct habitats were 

selected to make a fair comparison. In the 1950s, none of 

the used habitats was extinct. However, the terms extant 

and extinct are still used when describing the habitats in the 

1950s because the terms are based on the state of the 

habitats in 2022. Subsequently, literature was studied about 

the remote sensing methods and habitat preferences of B. 

viridis so that when the study areas were visited, it was 

known what Land Use and Land Cover (LULC) to look for 

when in the field. In this period, the aeroplane imagery of 

habitats was gathered, and some classification classifiers 

were tested to determine which classifier was most suitable 

for this study. After the literature study, the study areas 

were visited to gather information about their geography 

and LULC for referencing during the classification process. 

After returning from the study area visits, the classification 

process began. This included pre-processing (when 

necessary), the image classification, post-processing, and 

manual correction. The last step in the classification 

process is the accuracy assessment. A flowchart, Figure 3, 

was created to provide an overview of the classification 

process. Finally, an analysis of the results was done in 

which the habitat composition differences of extant and 

extinct habitats were compared.  

 

Selection of study areas. This study focused on 14 B. 

viridis habitats (Figure 2) in southern Sweden (Appendix A 

– European green toad habitats). The choice of the number 

of study areas was based on the number of extant habitats 

and how laboursome and time-consuming the classification 

process could be. Since there are only seven extant habitats 

in 2022, it was chosen to use the seven most recently extinct 

habitats (last observation between 2007 and 2010) of past 

B. viridis occurrence so that a fair comparison could be 

made. The choice to use the most recently extinct habitats 

was based on the assumption that there was a higher chance 

of finding the cause for the B.viridis population decrease 

due to their relatively recent state of extinction.  

The centre of habitats was the longitude and latitude, 

based on the study of Ballard-Johansson [9]. A polygon 

with a radius of 1km from the observation location was 

created in ArcGIS Pro and used as the study area, making 

the surface area per habitat 3,14 km2. If the polygon area 

contained a significant amount of water (based on visual 

observation of the aeroplane imagery), the centre of the 

study area was moved to include more terrestrial LULC 

while remaining as close as possible to the original 

location. If an extinct habitat was closer than 1km to a 

Figure 2, the habitats used in this study. 
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different studied habitat, it was excluded from the study, 

and the next most recently extinct habitat was used. This 

was done so that there was no overlap of study areas.  

 

Study area visits. All habitats (Appendix A) except 

Utklippan and Ven and Ven were visited to familiarise 

oneself with their LULC. During these visits, photos and 

notes were taken of the landscape: E.g. vegetation height 

and density. The gathered information proved to be helpful 

for referencing in the classification process. 

 

Image classification. The imagery for the 

classifications was obtained from Landmäteriet. The 

historical aeroplane imagery was orthorectified 

(conversion of raw photography by removing sensor and 

aircraft motion and terrain-related distortions) 

panchromatic with a pixel detail of 0.5m and 8bit colour 

depth and ranged from 1956 to 1965. The modern 

aeroplane imagery was orthorectified infrared with a pixel 

detail of 0.5m and 24bit colour depth, ranging from 2008 

to 2016. The imagery dates are unknown, but Landmäteriet 

states they were taken in autumn. Because of that, there was 

a notable difference in visible water in wetlands and ponds 

in the imagery due to the wet season (autumn/winter). 

Because there was only one year available of historical 

panchromatic imagery and multiple years of modern 

infrared imagery, it was chosen to match the amount of 

visible water in modern infrared imagery to what was 

visible in the historical panchromatic imagery. 

All panchromatic imagery required pre-processing to 

increase contrast and detail; this was done by increasing the 

colour depth to 32bit signed in ArcGIS Pro 2.9+. If multiple 

images covered a habitat, they were merged by creating a 

new mosaic, Figure 3.  

Initial testing of SML (SVM) and UML (ICUC) 

classifiers was done to determine which would be best 

suited. The choice for these classifiers was based on 

personal knowledge of how to use these. In addition, SVM 

was chosen over MLC because literature showed that it 

generally achieved better accuracy when classifying 

panchromatic imagery. The testing showed that both 

classifiers required substantial amounts of manual 

correction. However, SML was more laboursome due to the 

required training with training data in ArcGIS. Therefore, 

due to time constraints, the ICUC algorithm classifier was 

used for the image classifications of both historical 

panchromatic and modern infrared imagery. Post-

processing was done to clean up the classified maps and 

reduce noise (the so-called “salt and pepper” effect) by 

using the majority filter and boundary clean-up. By doing 

this, the classified “noisy” pixels are converted to another 

class that surrounds the “noisy” pixels. 

 

Manual correction. After post-processing the 

classification maps, manual correction had to be 

performed. The first correction step was done by 

converting the raster files to polygons and assigning 

numbers to the LULC classes. Then, the number of 

wrongly classified polygons was changed to the correct 

corresponding LULC class number. Occasionally, the 

shape of polygons had to be modified by cutting it to the 

correct shape. Correction priority was given to large 

polygons. However, if a LULC class (e.g. structures) had a 

relatively low surface area compared to other LULC classes 

(e.g. “agriculture” ), corrections were done with as much 

detail as possible.  

 

Normalisation. Because each classification had unique 

LULC classes, they needed to be normalised before a 

comparison could be made. In addition, the normalised 

classes were classed to be an open or covered LULC type, 

Table 2 and Figure 3.  

 
Table 2, normalisation system for the LULC classes used in this study. 

Normalised 

LULC class 

Open/covered Associated LULC 

class 

Agriculture  Open • Agriculture (crop 

fields) 

Barren Open • Bare mineral soil 

• Barren mineral 

surface with 

scattered shrubs 

and small bushes 

• Rocks and stones 

Forest Covered • Bushes and trees 

Herbaceous Open • Grass 

Urban Covered • Structures 

• Railroads 

• Roads 

• Industrial products 

and bulk storage 

• Sealed concrete & 

stone surfaces 

• Sealed concrete 

and asphalt 

surfaces 

• Wall 

Wetland Open • Wetland with long 

grass 

• Wetland with 

reeds 

• Temporary pool 

Water Open • Water 
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Accuracy assessment. To assess the accuracy of the 

created classification maps, accuracy assessments have 

been performed on five randomly selected habitats 

(Appendix A – European green toad habitats). One hundred 

stratified random points were assessed for these five 

habitats by comparing them to the used historical aeroplane 

and the modern infrared aeroplane images. Unfortunately, 

this method makes the accuracy assessment of the 

panchromatic imagery prone to misinterpretation and thus 

a likelihood of inaccuracy. Subsequently, confusion 

matrices were created based on these points, Figure 3. It 

should be noted that ArcGIS might create more, but never 

less than the specified amount of ground-truthing points. 

 

Analysis. Comparisons of extant and extinct habitats 

were made to determine if the two states had significant 

differences in LULC in the open-source statistical program 

Jamovi. The first analysis is based on the Modern Infrared 

Aeroplane Imagery (MIAI) classification and was used to 

determine if there was a significant difference in one or 

more LULC classes in the 2010s when comparing extant 

and extinct habitats. The second analysis is similar to the 

first and was used to determine if there is a significant 

difference between extant and extinct habitats in the 1950s 

of one or more LULC classes based on the Historical 

Panchromatic Aeroplane Imagery (HPAI) classifications. 

The third analysis determines if LULC classes of only 

extant habitats have changed significantly between the 

1950s and 2010s. The fourth and final analysis is similar to 

the third. However, it is used to determine if the LULC of 

only extinct habitats has changed significantly between the 

1950s and 2010s. 

The analyses were done by comparing the normalised 

LULC classes using independent samples T-tests. T-tests 

were chosen because, at all times, only two means were 

compared to look for specific relationships (e.g., the mean 

of the LULC class forest of extant habitats is compared to 

the mean of extinct habitats. Or, water of extant habitats in 

the 1950s is compared to water of extant habitats in the 

2010s). Depending on what assumptions were violated, 

different t-tests were used. A violation of an assumption 

occurs when p ≤ 0.05 

 

• If no assumptions were violated, a Student’s t-test 

was used.  

• If the normality test was violated, but the 

homogeneity of variance was not, a Mann-

Whitney-U t-test was used.  

• If the normality test was unviolated, but the 

homogeneity of variance was violated, a Welch’s 

t-test was used.  

• A Mann-Whitney-U t-test was used when both 

assumption checks were violated. 

Two hypotheses are presented to determine if a t-test is 

significant, meaning that there is a significant difference 

between two means of the same LULC class: 

 

1. H0: there is no significant difference between the 

two means; p > 0.05. 

2. Ha: there is a significant difference between the 

two means; p ≤ 0.05. 
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Figure 3, flowchart of the classification process. 
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4 RESULTS 

This chapter aims to present how LULC of extant and 

extinct habitats differ from each other. Moreover, to 

identify if the LULC of extant habitats and extinct habitats 

has changed significantly over time. This was done by 

classifying seven extant and seven extinct habitats using 

Historical Panchromatic Aeroplane Imagery (HPAI, 1956-

1967) and Modern Infrared Aeroplane Imagery (MIAI, 

2008-2016).  

In the 1950s, none of the used habitats was extinct. 

However, the terms extant and extinct are still used when 

describing the habitats in the 1950s because the terms are 

based on the state of the habitats in 2022. The first and 

second analyses determine if the LULC of extant habitats 

differs from extinct habitats, in the 1950s and 2010s, 

respectively. Comparing LULC between extant and extinct 

habitats identifies possible habitat differences that might 

have contributed to the decline of B. viridis (e.g., a 

significant difference between open LULC and covered 

LULC). The third and fourth analyses look at extant 

habitats and extinct habitats separately to determine if the 

LULC of either habitat state changed significantly over 

time, from the 1950s to the 2010s. This analysis is 

important because it shows if the LULC of extant or extinct 

habitats changed after the 1950s or if little change occurred. 

Thus, showing that the decline B. viridis’ population was 

possibly already happening due to the adverse habitat 

conditions before the 1950s.  

4.1 LAND USE AND LAND COVER 

4.1.1 Comparing extant habitats to extinct habitats.  

In this analysis, “p” indicates how likely it is that there 

is a significant (p ≤ 0.05) difference between extant habitats 

and extinct habitats at one point in time. The analysis shows 

that extinct habitats have significantly more “agriculture” 

than extant habitats in the 1950s (p = 0.02, 8.87km2 & 

1.16km2) and the 2010s (p = 0.039, 6.58 km2 & 0.4km2). 

Extant habitats had 87% less “agriculture” in the 1950s and 

94% less in the 2010s than extinct habitats, Table 3, Figure 

4 and Appendix B – The sum of square kilometres per 

LULC. 

Extinct habitats have significantly less “barren” LULC 

than extant habitats in the 1950s (p = 0.21, 0.55 km2 & 

3.98km2) and the 2010s (p = 0.005, 0.28km2 & 3.13km2). 

Extinct habitats had 86% less “barren” land than extant 

habitats in the 1950s and 91% less in the 2010s, Table 3, 

Figure 4 and Appendix B – The sum of square kilometres 

per LULC. 

There was no significant difference of open LULC and 

covered LULC when comparing extant habitats to extinct 

habitats, making it unlikely that the difference in habitat 

openness contributed to the decline of B. viridis. 

 
Table 3, t-tests comparing LULC classes of extinct and extant habitats 

in MIAI and HPAI. 

LULC Class HPAI p MIAI p 

Agriculture  0.020 0.039 

Barren 0.021 0.005 

Forest 0.522 0.805 

Herbaceous 0.935 0.311 

Urban 0.463 0.902 

Wetland 0.855 0.794 

Water 0.096 0.160 

Open 0.442 0.584 

Covered 0.456 0.902 

 

 

 

Figure 4, the sum of square kilometres of the LULC classes 

"agriculture" and "barren", comparing HPAI to MIAI. 

4.1.2 Comparing LULC of the 1950s to the 2010s of 

extant habitats and extinct habitats. 

Habitat composition of extant and extinct habitats show 

no significant differences when comparing HPAI to MIAI, 

meaning that adverse habitat characteristics 

(overabundance of agriculture and lack of barren land 

types) were already present in extinct habitats before the 

1950s and did not develop in the following decades. In 

addition, habitat openness did not change for either extant 

or extinct habitats between the 1950s and 2010s, Table 4.  

1.16

8.87

3.98

0.550.4

6.58

3.13

0.28

HPAI MIAI HPAI MIAI HPAI MIAI HPAI MIAI

Extant Extinct Extant Extinct

Agriculture Barren

Km2 of agriculture and 

barren LULC in HPAI and 

MIAI
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Table 4, t-tests of LULC change of extant habitats between 956-2016. 

 

 

 

 

 

 

 

 

4.2 ACCURACY ASSESSMENT 
The classification accuracies of the five randomly 

selected habitats were evaluated and presented in confusion 

matrices as shown in Appendix C – Confusion matrices, 

where supplementary details can be found. Based on the 

confusion matrixes, Table 5 is created, which reports the 

Overall Accuracy (OA) and Kappa Coefficient (KC) of the 

Historical Panchromatic Aeroplane Imagery (HPAI) and 

Modern Infrared Aeroplane Imagery (MIAI) 

classifications. The accuracy assessments show how well 

the classification maps of the five assessed B. viridis 

habitats reflect reality. Generally, OA and KC need to be 

85% or higher to be considered accurate representations of 

reality.  

The results show that HPAI and MIAI classifications 

represent features in the field at a sufficient level. However, 

the probability of this being due to chance is slightly higher 

than preferred. HPAI classifications generally reflected 

reality better than MIAI classifications, Table 5.  

All five assessed HPAI and MIAI classifications 

achieved OA of over 85%, meaning there is sufficient 

probability that a certain feature of an area in the field is 

correctly classified. Two out of five assessed HPAI 

classifications achieved KC of over the standard of 85% 

(Kungstorp, 88.2% & Ven, 88.4%) and one out of five for 

MIAI classifications (Kungstorp, 88.2%). The lowest 

HPAI classification KC is 77.2%, and 81.2% for MIAI 

classifications, while the mean KC of HPAI classifications 

is 84.2% and 84% for MIAI classification. This indicates 

that the chance that the classification is correct due to 

chance only is close to acceptable levels, where 100% KC 

shows that there was perfect agreement between the created 

classification maps and reality, and -100% shows no 

agreement with reality at all.  

 

 

 

 

Table 5, OA and KC of the five randomly selected B. viridis habitats 

for HPAI and MIAI classifications. 

Habitat name   HPAI MIAI 

Vellinge västra 

trädgård 

KC 77.2% 83.7% 

OA 88.7% 88.8% 

Kungstorp 
KC 88.2% 88.2% 

OA 90.1% 89.9% 

Klagshamn 
KC 84.5% 84.3% 

OA 88.4% 87.1% 

Ottenby södra 

udde 

KC 82.9% 82.7% 

OA 85.7% 86.2% 

Ven 
KC 88.4% 81.2% 

OA 92.1% 86.8% 

        

Kappa 

Coefficient 

Max 88.4% 88.2% 

Min 77.2% 81.2% 

Mean 84.2% 84.0% 

Overall Accuracy 

Max 92.1% 89.9% 

Min 85.7% 86.2% 

Mean 89.0% 87.8% 

 

 

 

 

 

 

 

 

 

 

 

 

  

LULC 

Class 

Extant 

p 

Extinct 

p 

Agriculture  0.810 0.535 

Barren 0.383 0.284 

Forest 0.096 0.456 

Herbaceous 0.710 0.174 

Urban 0.073 0.318 

Wetland 0.444 1.000 

Water 0.696 1.000 

Open 0.444 0.918 

Covered 0.053 0.456 
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5 DISCUSSION 

This study was designed to identify differences between 

extant and extinct habitats of B. viridis. The results of this 

study show significant differences in habitat composition 

between extant and extinct B. viridis habitats in the 1950s 

and the 2010s, the main differences being the significant 

amount of agriculture and the lack of barren land in extinct 

habitats. However, no significant difference in habitat 

openness was found between extant and extinct habitats. 

Furthermore, the lack of barren land and a significant 

amount of agriculture were already present in extinct 

habitats before the 1950s. 

5.1 LAND USE AND LAND COVER 
In recent decades agriculture has reached prominence in 

politics for its adverse effects on the environment and 

biodiversity. This study indicates that agriculture affects B. 

viridis habitats and possibly contributed to the decline of 

this toad species in Sweden. Engström’s environmental 

assessment (2007) of Sweden’s agriculture illustrates that 

agriculture has contributed to eutrophication and 

overabundant resource use, such as pesticides and fertilizer 

[31]. These findings are supported by Piha (2006), who 

found that agricultural expansion and intensification, 

particularly overabundant pesticide use in wetlands, 

negatively affect amphibians in their larval and adult 

stages. However, there are added adverse effects on 

amphibians as the impacts of intensive agriculture are more 

apparent when amphibians face multiple environmental 

stressors [28], such as the lack of barren land. Sawatsky and 

Fahrig (2018) also point out that in areas that experience 

wetland loss due to agricultural activities and expansion, it 

is better to implement landscape-scale terrestrial habitat 

protection guidelines instead of focusing on wetland 

protection [52]. This study shows that the adverse amount 

of agriculture was already present before the 1950s. Fredh 

and Mazier (2016) reinforce this finding and indicate that 

Swedish agriculture intensified in the 1930s when 

grasslands made way for croplands [12].  

This study showed that the amount of barren land and 

agriculture in B. viridis habitats did not change between the 

1950s and the 2010s, suggesting that the critical threshold 

for barren land and impacts of agriculture were exceeded a 

long time ago. This suggests that the decline of the B. 

viridis population was a delayed and slow process. Jackson 

and Sax (2009) and Kuussasri et al. (2009) support this 

suggestion and show that local extinction can occur with a 

substantial delay [53]. However, populations of species that 

are predicted to go extinct can still be restored through 

habitat restoration and landscape management [54], further 

supporting the need for the protection of terrestrial habitats 

as expressed by Sawatsky and Fahrig, 2018 [52].  

 B. viridis is known to be adapted to dry and open 

habitats [15]. The lack of barren land types in extinct 

habitats, which is reflected in this study's results, is a 

contributing factor to the population decline of B. viridis. 

The crucial role of barren habitats is corroborated by 

Cabela (1990), who showed that by the 1980s, B. viridis 

disappeared in most of its habitats in Vienna due to the 

destruction of summer habitats (barren land types) and 

breeding habitats. Coincidently, Cabela’s study also 

indicated that the use of pesticides in agriculture 

contributed to the decreased toad populations, which 

explains the B. viridis population decline in Sweden [27]. 

Vences et al. (2003) found that the disappearance of gravel 

pits caused the population of B. viridis to drastically decline 

[55], further suggesting the importance of barren land types 

for B. viridis. 

As this study suggests, agriculture expansion and 

intensification, and the loss of barren land types (higher 

area of barren land in extant habitats) could have adversely 

affected B. viridis habitats and decreased its populations. 

Andrén (1999) supports this finding [26], who found that 

habitat loss is complemented by smaller habitat sizes and 

isolation, causing reduced populations and increased 

migration. The scattered populations are additionally 

stressed due to road mortality [32].  

All in all, this study’s results and literature strongly 

indicate that B. viridis habitats are affected by intense 

agricultural activities. This, combined with the lack of 

barren land in extinct habitats, could have contributed to 

habitat fragmentation and thus reduced the population of B. 

viridis in Sweden. As Piha (2006) [28] suggested, an 

additional stressor combined with intensive agriculture 

could have caused B. viridis populations to decline. 

However, the similarities in habitat openness of extant and 

extinct habitats in this study suggest that degree of habitat 

openness is unlikely to have contributed to the decline of 

B. viridis populations. 

5.2 METHOD 
The results of a classification map are heavily 

influenced by the type and quality of the used imagery [48]. 

While classifying, it was found that Historical 

Panchromatic Aeroplane Imagery (HPAI) and Modern 

Infrared Aeroplane Imagery (MIAI) often had LULC with 

similar spectral properties, which increased the number of 

misclassifications. For example, while classifying HPAI, 

water was often a black colour similar to rooftops, 

suggesting that it might be good practice to lower the 

minimum acceptable accuracy levels as suggested by 

Foody (2008) [49]. Furthermore, while the spectral detail 

level of the used images was 0.5m, at times, it was found to 

be challenging to distinguish urban objects and LULC for 

this study's desired classification detail level. This suggests 

that it might be better to classify urban and similar areas as 
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a whole and not by their components, such as roads, 

gardens and houses. 

HPAI was contrast-corrected as suggested by Bolles and 

Forman (2018) [44], which considerably improved image 

quality. This study achieved a similar or higher average 

Overall Accuracy (OA, 89%) and Kappa Coefficient (KC, 

84,4%) than other studies that classified HPAI. A similar 

accuracy assessment method was used by Clifford et al., 

2011, who attained up to 96% OA using a Supervised 

Machine Learning (SML) classifier [51]. Carmel and 

Kadmon (1998) reported OA values of up to 58% for 1960s 

HPAI when using an SML classifier [33]. However, since 

their study in 1998, technology has significantly improved, 

possibly making classifications performed in the 2020s 

more accurate. Neither study reported KC, making 

comparisons with their studies incomplete. Nevertheless, 

similar results are reported by Okeke and Karnieli (2006), 

who exceeded 85% OA and 80% KC, respectively [42]. 

The comparisons indicate that the ICUC combined with 

post-processing and manual correction performs similarly 

to SML methods when classifying HPAI. 

Interestingly, the classifications of MIAI achieved 

lower average OA (87.8%) and KC (84%) values than the 

HPAI classifications (OA = 89% & KC = 84.2%. The 

ICUC of Hasmadi et al. (2009) achieved lower OA 

(80,56%) and KC (73,65%) [47]. These lower values could 

be attributed to the lack of post-processing in their study. 

Srivastava et al. (2012) compared the performance of three 

SML classifiers: MLC (OA = 82,3%, KC = 71,1%), SVM 

(OA = 84,9%, KC = 75%) and ANN (OA = 84,9%, KC = 

75%) [41], which were less accurate than the method in this 

study. However, a possible explanation for their lower OA 

and KC could be the lower pixel detail of 30m of their used 

imagery. This indication is strengthened due to Hasmadi et 

al., 2009, using SPOT 5 satellite imagery with a pixel detail 

of 10m, suggesting that higher OA and KC values can be 

achieved when using higher pixel detail imagery. 

It should be noted that the manual correction used in this 

study is vulnerable to misinterpretations by the user and 

thus misclassifications of an area’s LULC. In addition, the 

accuracy assessment used in this study, which is similar to 

the assessment method used by Clifford et al. (2011) [51], 

assessed the classification maps by comparing them to the 

same imagery upon which they are based. However, this 

accuracy assessment method is vulnerable to errors due to 

human misinterpretations, like manual corrections. 

Therefore, one must get familiar with the target area by, for 

example, visiting, studying high-resolution photos and 

maps, or both. However, the user should be cautious when 

visiting an area on a different date than when the 

classification is done because changes to LULC might have 

occurred. 

Remote sensing is a valuable tool when identifying area 

changes over time, as suggested by Cawkwell et al. (2016) 

[13]. However, as Morales et al. (2019) indicate [45], many 

steps and decisions can influence the accuracy of the 

created classification map throughout the classification 

process. Unsupervised remote sensing using the ISO-

cluster unsupervised classifier combined with post-

processing and manual correction shows comparable 

results to similar studies. However, human interpretation of 

photos and using the same imagery to assess the 

classification accuracy make the method prone to 

inaccuracies and thus potentially unreliable classification 

maps. Nevertheless, remote sensing can produce reliable 

classification maps with knowledge of the various 

classification methods, their vulnerabilities, appropriate 

materials and imagery. This, combined with familiarity of 

the target habitat, either through visits or examining high-

resolution photos or maps, show potential for a relatively 

easily applicable classification method when classifying 

panchromatic and infrared imagery.  
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6 CONCLUSION 

The project aimed to determine if differences in habitat 

composition between extant and extinct B. viridis habitats 

could have contributed to the decline of the species in 

Sweden. The comparison was made by remote sensing 

seven extant and seven, in 2022, extinct B. viridis habitats. 

Classifications were performed on panchromatic historical 

aeroplane photographs (1956-1967) and modern infrared 

aeroplane imagery (2008-2016). 

 

This study shows significant habitat composition 

differences between extant and extinct B. viridis habitats in 

the 1950s and the 2010s. Adverse area characteristics 

(overabundant agriculture and lack of barren land) were 

present in extinct habitats before the 1950s, as no 

significant habitat change has occurred since then. This 

indicated that the critical thresholds for barren land and 

agricultural impacts were exceeded long ago and that the 

decrease of the B. viridis population in Sweden was a 

delayed and slow event. Habitat openness is unlikely to 

have contributed to the decline of B. viridis populations 

because no significant difference was found between extant 

and extinct habitats. However, extinct habitats contained 

much more agriculture and much less barren lands in the 

1950s and 2010s. The combination of these adverse habitat 

characteristics could have contributed to decreasing B. 

viridis populations through reducing habitat sizes, habitat 

fragmentation, and increased and further migration.  

 

The remote sensing method of this study shows 

promising results and shows the necessity of unsupervised 

classification in combination with high-resolution imagery, 

post-processing and manual correction. However, the 

probability that features in the field are classified correctly 

due to chance is slightly higher than preferred. Human 

interpretation of areas and manual correction show 

vulnerabilities to errors and thus potentially inaccurate 

classification maps. The method’s reliability depends on 

the user’s familiarity with the target habitats, making it 

essential that the user familiarises oneself through visits or 

examination of photos and maps before classifying areas. 

Nevertheless, the method produces maps that represent 

features in the field satisfactorily. 

 

In conclusion, Nordens Ark could incorporate remote 

sensing in their conservation strategy to identify suitable 

reintroduction sites and habitats for the European Green 

Toad. 
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7 RECOMMENDATIONS 

Several practical actions can be taken to help 

reintroduce and conserve B. viridis in Sweden. Further 

conservation efforts should focus on habitats with much 

barren land and relatively little agriculture. Furthermore, 

habitats in an area with intensive agriculture can be fortified 

by implementing guidelines for conservation efforts by 

protecting terrestrial habitats on a landscape level. The 

terrestrial habitat protection guidelines can be incorporated 

in the B. viridis species action plan of the Swedish 

environmental agency Naturvårdsverket and implemented 

by the various Swedish county boards. In addition, 

additional habitats can be created to reduce the effects of 

habitat isolation, habitat fragmentation and mortality due to 

migration. When creating new habitats, the focus should be 

on choosing an area with minimal agriculture and on 

creating barren land. 

 

When using remote sensing for conservation purposes, 

it is recommended to use imagery with a high pixel detail. 

Before the target habitats are remotely sensed, it is highly 

advisable to familiarize oneself with the areas through 

visits or examination of high-resolution photos and maps. 

Familiarisation will result in better interpretation of the 

habitat composition and improved accuracy when 

classifying. In the classification process, it is recommended 

to classify urban areas as a whole and not by their 

components, such as roads, gardens and houses. The 

generalisation of such areas will reduce inaccuracies and 

increase the reliability of the final classification map.  
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APPENDIX A – EUROPEAN GREEN 

TOAD HABITATS 

Table 6, B. viridis habitats used in this study [9]. 

Habitat location Latitude Longitude Last year of toad activity State 

Vellinge västra trädgård 55.458043 12.99209 2008 Extinct 

Gessie ängar 55.497423 12.94245 2009 Extinct 

Vellinge norra 55.476107 12.95842 2009 Extinct 

Ven 55.911694 12.68445 2009 Extinct 

Hammars näs 55.449659 12.94732 2010 Extinct 

Jordbroskogen 55.751602 12.97793 2010 Extinct 

Kungstorp änger 55.441515 12.97262 2010 Extinct 

Linhamns kalkbrott 55.567592 12.93283 2021 Extant 

Klagshamn 55.521948 12.91457 2021 Extant 

Lernacken 55.565045 12.89151 2021 Extant 

Ottenby södra udde 56.195932 16.39916 2021 Extant 

Landakrahamnen 55.859484 12.84879 2021 Extant 

Högby hamn 57.168936 17.0343 2021 Extant 

Utklippan 55.952687 15.70286 2021 Extant 
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APPENDIX B – THE SUM OF 

SQUARE KILOMETRES PER LULC 

Table 7, the sum of square kilometers of all habitats per LULC class 

subdivided by state and time. 

LULC State  Time Km2 

Agriculture Extant HPAI 1.16 

 Extant MIAI 0.4 

 Extinct HPAI 8.87 

 Extinct MIAI 6.58 

Barren Extant HPAI 3.98 

 Extant MIAI 3.13 

 Extinct HPAI 0.55 

 Extinct MIAI 0.28 

Forest Extant HPAI 0.49 

 Extant MIAI 2.12 

 Extinct HPAI 1.67 

 Extinct MIAI 1.85 

Herbaceous Extant HPAI 4.88 

 Extant MIAI 5.57 

 Extinct HPAI 5.06 

 Extinct MIAI 7.99 

Urban Extant HPAI 0.14 

 Extant MIAI 1.33 

 Extinct HPAI 0.2 

 Extinct MIAI 0.6 

Water Extant HPAI 9.47 

 Extant MIAI 7.92 

 Extinct HPAI 3.53 

 Extinct MIAI 3.38 

Wetland Extant HPAI 2.11 

 Extant MIAI 1.3 

 Extinct HPAI 1.88 

 Extinct MIAI 1.41 

Open Extant HPAI 2.16 

 Extant MIAI 1.85 

 Extinct HPAI 1.99 

 Extinct MIAI 1.96 

Covered Extant HPAI 0.63 

 Extant MIAI 3.46 

 Extinct HPAI 1.87 

 Extinct MIAI 2.45 
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APPENDIX C – CONFUSION MATRICES  

This appendix presents the confusion matrices of the five accuracy assessed habitats. The overall accepted accuracy standard is 85%, or 0.85. Values that are 

below that accepted standard are highlighted in red. 

 

Vellinge västra trädgård 1962 

Class Grass Structures Bushes and trees Bare mineral soil Agriculture  Total U_Accuracy Kappa 

Grass 8 1 1 0 0 10 0,800 0 

Structures 0 8 2 0 0 10 0,800 0 

Bushes and trees 1 0 8 0 1 10 0,800 0 

Bare mineral soil 0 1 0 4 5 10 0,400 0 

Agriculture  0 0 2 0 82 84 0,976 0 

Total 9 10 13 4 88 124 0 0 

P_Accuracy 0,889 0,800 0,615 1,000 0,932 0 0,887 0 

Kappa 0 0 0 0 0 0 0 0,772 

 

Vellinge västra trädgård 2010 

Class Grass Structures Bushes and trees Bare mineral soil Agriculture  Roads Total U_Accuracy Kappa 

Grass 17 2 1 1 0 0 21 0,810 0 

Structures 0 10 0 0 0 0 10 1,000 0 

Bushes and 

trees 1 1 5 0 1 2 10 0,500 0 

Bare mineral 

soil 0 0 0 10 0 0 10 1,000 0 

Agriculture  2 0 0 0 62 0 64 0,969 0 

Roads 0 2 0 1 0 7 10 0,700 0 

Total 20 15 6 12 63 9 125 0 0 

P_Accuracy 0,850 0,667 0,833 0,833 0,984 0,778 0 0,888 0 

Kappa 0 0 0 0 0 0 0 0 0,837 
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Kungstorp 1962 

Class Reeds Wetland Grass Water Agriculture  Structures 

Bushes and 

trees Bare mineral soil Total U_Accuracy Kappa 

Reeds 9 0 1 0 0 0 0 0 10 0,900 0 

Wetland 0 10 0 0 0 0 0 0 10 1,000 0 

Grass 3 4 23 1 0 0 0 0 31 0,742 0 

Water 0 2 1 31 0 0 0 0 34 0,912 0 

Agriculture  0 0 1 0 15 0 0 0 16 0,938 0 

Structures 0 0 0 0 0 10 0 0 10 1,000 0 

Bushes and 

trees 0 0 0 0 0 0 10 0 10 1,000 0 

Bare 

mineral soil 0 0 0 0 0 0 0 10 10 1,000 0 

Total 12 16 26 32 15 10 10 10 131 0 0 

P_Accuracy 0,750 0,625 0,885 0,969 1,000 1,000 1,000 1,000 0 0,901 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0,882 

 

Kungstorp 2010 

Class Water Agriculture  Wetland Grass Short grass Structures Roads 

Bushes and 

trees Total U_Accuracy Kappa 

Water 27 0 1 0 0 0 0 0 28 0,964 0 

Agriculture  0 16 0 1 0 0 0 0 17 0,941 0 

Wetland 0 0 17 4 0 0 0 0 21 0,810 0 

Grass 0 0 1 21 0 0 0 0 22 0,955 0 

Short grass 0 0 1 1 9 0 0 0 11 0,818 0 

Structures 1 0 0 0 0 9 0 0 10 0,900 0 

Roads 0 0 0 0 0 0 10 0 10 1,000 0 

Bushes and 

trees 0 3 0 0 0 0 0 7 10 0,700 0 

Total 28 19 20 27 9 9 10 7 129 0,000 0 

P_Accuracy 0,964 0,842 0,850 0,778 1,000 1,000 1,000 1,000 0 0,899 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0,882 
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Klagshamn 1962 

Class Water Wetland Bare mineral soil Grass Structures Bushes and trees Total U_Accuracy Kappa 

Water 21 2 0 0 0 0 23 0,913 0 

Wetland 0 6 0 4 0 0 10 0,600 0 

Bare mineral 

soil 0 0 12 0 0 1 13 0,923 0 

Grass 0 1 0 42 0 3 46 0,913 0 

Structures 0 0 1 0 9 0 10 0,900 0 

Bushes and 

trees 0 0 0 1 0 9 10 0,900 0 

Total 21 9 13 47 9 13 112 0 0 

P_Accuracy 1,000 0,667 0,923 0,894 1,000 0,692 0 0,884 0 

Kappa 0 0 0 0 0 0 0 0 0,845 

 

Klagshamn 2010 

Class Water Wetland 

Bare mineral 

soil Grass Structures 

Bushes and 

trees Sealed concrete surface Roads Total U_Accuracy Kappa 

Water 16 0 0 0 0 0 0 0 16 1,000 0 

Wetland 0 8 0 2 0 0 0 0 10 0,800 0 

Bare mineral 

soil 0 0 10 0 0 0 0 0 10 1,000 0 

Grass 0 6 0 26 0 4 0 0 36 0,722 0 

Structures 1 0 0 0 8 1 0 0 10 0,800 0 

Bushes and trees 0 0 0 2 0 34 0 1 37 0,919 0 

Sealed concrete 

surface 0 0 0 0 0 0 10 0 10 1,000 0 

Roads 0 0 0 0 0 1 0 9 10 0,900 0 

Total 17 14 10 30 8 40 10 10 139 0 0 

P_Accuracy 0,941 0,571 1,000 0,867 1,000 0,850 1,000 0,900 0 0,871 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0,843 
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Ottenby 1956 

Class Water Wetland Wall Grass Structures 

Bushes and 

Trees Bare mineral soil Road Total U_Accuracy Kappa 

Water 35 1 0 0 0 0 2 0 38 0,921 0 

Wetland 1 24 0 6 0 0 1 0 32 0,750 0 

Wall 0 0 7 0 0 0 3 0 10 0,700 0 

Grass 0 1 0 19 0 0 0 0 20 0,950 0 

Structures 0 0 0 4 6 0 0 0 10 0,600 0 

Bushes and 

Trees 0 0 0 0 0 10 0 0 10 1,000 0 

Bare mineral 

soil 0 0 0 0 0 0 10 0 10 1,000 0 

Road 0 0 0 0 0 0 1 9 10 0,900 0 

Total 36 26 7 29 6 10 17 9 140 0 0 

P_Accuracy 0,972 0,923 1,000 0,655 1,000 1,000 0,588 1,000 0 0,857 0 

Kappa 0 0 0 0 0 0 0 0 0 0 0,829 

 

Ottenby 2008 

Class Water Wetland Grass Structures Bushes and trees Bare mineral soil Roads Total U_Accuracy Kappa 

Water 40 0 0 0 0 0 0 40 1,000 0 

Wetland 0 20 3 0 0 0 0 23 0,870 0 

Grass 0 8 19 0 0 0 0 27 0,704 0 

Structures 0 0 0 9 0 1 0 10 0,900 0 

Bushes and 

trees 0 0 0 0 10 0 0 10 1,000 0 

Bare mineral 

soil 5 1 0 0 0 4 0 10 0,400 0 

Roads 0 0 0 0 0 0 10 10 1,000 0 

Total 45 29 22 9 10 5 10 130 0 0 

P_Accuracy 0,889 0,690 0,864 1,000 1,000 0,800 1,000 0 0,862 0 

Kappa 0 0 0 0 0 0 0 0 0 0,827 
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Ven 1965 

Class 

“agriculture

”  

Bushes and 

trees Grass Structures 

Bare Mineral 

soil Water 

Sealed concrete & stone 

surfaces Total 

U_Accurac

y Kappa 

“agriculture”  71 1 2 0 0 0 0 74 0,959 0 

Bushes and trees 1 9 0 0 0 0 0 10 0,900 0 

Grass 0 3 11 0 0 0 1 15 0,733 0 

Structures 0 0 0 10 0 0 0 10 1,000 0 

Bare Mineral soil 1 0 0 2 7 0 0 10 0,700 0 

Water 0 0 0 0 0 10 0 10 1,000 0 

Sealed concrete 

& stone surfaces 0 0 0 0 0 0 10 10 1,000 0 

Total 73 13 13 12 7 10 11 139 0 0 

P_Accuracy 0,973 0,692 0,846 0,833 1,000 1,000 0,909 0 0,921 0 

Kappa 0 0 0 0 0 0 0 0 0 0,884 

 

Ven 2016 

Class “agriculture”  Bushes and trees Grass Structures Bare mineral soil Water Roads Total U_Accuracy Kappa 

“agriculture”  65 0 1 0 1 0 0 67 0,970 0 

Bushes and trees 0 8 1 1 0 0 0 10 0,800 0 

Grass 2 2 14 1 0 0 0 19 0,737 0 

Structures 1 0 0 8 1 0 0 10 0,800 0 

Bare mineral soil 0 1 4 0 4 0 1 10 0,400 0 

Water 0 0 0 0 0 10 0 10 1,000 0 

Roads 1 0 0 0 0 0 9 10 0,900 0 

Total 69 11 20 10 6 10 10 136 0 0 

P_Accuracy 0,942 0,727 0,700 0,800 0,667 1,000 0,900 0 0,868 0 

Kappa 0 0 0 0 0 0 0 0 0 0,812 

 

 


